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Abstract  

Earthquake monitoring in urban settings is crucial but challenging due to the strong cultural noise 
in seismic recordings inherent to urban environments. Here we develop a deep-learning-based 
seismic denoising algorithm – UrbanDenoiser – to suppress the seismological urban noise. The 
algorithm is trained using a waveform data set that combines rich noise sources from the urban 
Long Beach dense array and high signal-to-noise ratio (SNR) earthquake signals from the rural 
San Jacinto dense array. Application of UrbanDenoiser to urban seismic data demonstrates that 
UrbanDenoiser can strongly suppress the seismic noise levels relative to the signals, and that the 
seismic signals can be recovered from noisy data with SNR floor around one. Earthquake location 
based on the denoised continuous Long Beach data does not support the previously reported 
observational result of mantle seismicity beneath Los Angeles, while it suggests a fault model 
featuring shallow creep, intermediate locking, and localized stress concentration at the base of the 
seismogenic zone. 

  



Introduction 

Earthquake risk is highest in urban settings due to both population density and to the presence 
of extensive and vulnerable infrastructure. Ideally, intensive earthquake monitoring efforts in 
urban areas would be used to characterize the fault systems that pose the most immediate and direct 
threats to cities; however, the same factors – population and infrastructure – that cause the risk 
exposure to be high, also make earthquake monitoring difficult to carry out due to both the various 
kinds of seismic noise generated in cities, and to the logistical difficulties of instrumental 
deployments. 

The Los Angeles metropolitan area is located within an active plate boundary. The Newport-
Inglewood Fault runs directly through Los Angeles (Fig. 1), as do other faults that either traverse 
it, or bound the Los Angeles Basin, including the Palos Verdes, Santa Monica-Hollywood, Sierra 
Madre, Whittier Faults and some blind faults. Microseismic monitoring is important for this 
densely populated city because earthquake locations provide essential constraints on the location 
and geometry of active faults and the hazards they pose1-3. 

 
a                                       b 

Figure 1. Los Angeles Basin and Long Beach dense nodal deployment. a Map of the Los 
Angeles Basin showing Newport-Inglewood and other faults (VF: Verdugo Fault; ERF: Eagle 
Rock Fault; EMF: East Montebello Fault; WHF: Workman Hill Fault). Blue and green polygons 
outline the Long Beach phase A and B, deployments. Red stars E1 and E2 show epicenters of 
earthquakes that occurred during the deployment of Long Beach phase B. AA’ is a profile across 
the epicenter E1. BB’ is a line across the epicenter E1. Red star ES shows the main shock epicenter 
of 2014 La Habra earthquake sequence. Green and blue triangles show regional stations from 
SCSN close to the Long Beach deployment and the earthquake sequence, respectively. b Map of 
Long Beach phase B deployment. Stripe of missing sensors in the upper left is the Long Beach 
Airport runway. Narrow gap in the northern and eastern part of the deployment tracks the highway 
and local roads. Black lines show surface trace of the Newport-Inglewood Fault. Red dashed 
rectangle is the surficial boundary of the 3D imaging volume we use in our analysis.  
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Traditional earthquake monitoring methods that use single-station measurements to detect 
wave arrivals for events above the noise floor on individual channels may fail to detect smaller 
events4-6. Dense array data provide an opportunity to detect and analyze these weak sources 
because adjacent stations have common signal attributes that can be exploited for detection. In 
2011 and 2012, dense arrays with ~100 m spacing were deployed in two phases in Long Beach 
(Fig. 1a, blue and green polygons). Phase A (blue polygon) operated for the first six months of 
2011, covered an area of 10 km × 7 km, and included approximately 5200 vertical 10 Hz 
geophones with sampling frequency of 500 Hz. Phase B (green polygon) extended the original 
survey towards the east and shared a similar tectonic setting above a branch of the Newport-
Inglewood Fault Zone (NIFZ). It operated for the first three months of 2012, covered an area of 
8.5 km × 4.5 km, and included approximately 2,500 geophones. 

Inbal et al.7, 8, Li et al. 9 and Yang et al.10 used the density of seismic wavefield data from these 
Long Beach arrays for microseismic monitoring. To suppress the strong cultural noise from the 
Long Beach Phase A data, Inbal et al.7,8 used downward continuation to back propagate the 
wavefield recorded at surface to 5 km depth and performed back-projection (BP) to locate/image 
seismic events below that. They detected and located widespread seismicity at depths greater than 
20 km in the upper mantle, which is much deeper than the conventionally determined and widely 
accepted seismogenic depth limit of continental earthquakes in this region11. Li et al.9 used local 
waveform similarity to detect small events from the low signal-to-noise ratio (SNR) data. Their 
finding differs from Inbal et al.’s in that they only detected events with shallow origins. Yang et 
al.10 applied a trace-randomization procedure to assess the reliability of the upper mantle 
earthquakes using back-projected Long Beach Phase B data. By comparing the seismic location 
results between the original and trace-randomized data, they inferred that the deep upper-mantle 
events found by Inbal et al may not be reliable event detections. 

The discrepancy among these results occurs primarily due to the low SNR of the data. While 
methods like downward continuation/BP and local waveform similarity can decrease the detection 
threshold for small earthquakes, they are sensitive to both noise and uncertainties in the velocity 
structure. Seismic denoising has the potential to enhance detection sensitivity and has the 
flexibility to improve results for a broad range of approaches to earthquake detection/location as 
well as for seismic structural imaging12-14. 

Traditional denoising methods based on simple spectral filtering fail when seismic signals and 
noise overlap within the same frequency band. Time-frequency domain denoising can overcome 
this problem, however, the choice of a suitable thresholding function to map the noisy data into 
optimally denoised signal is challenging. Machine learning techniques, especially deep learning15 
provide a powerful approach to learn complex functional relationships and to use them to extract 
useful characteristics from very large data sets16-19. It provides a promising approach for time-
frequency denoising methods through sparse representation of data and improved signal versus 
noise. Zhu et al.20 developed DeepDenoiser based on a deep neural network, which significantly 
improves the SNR with minimal changes in the waveform shape of interest. DeepDenoiser was 
originally trained on an extensive dataset from Northern California that were recorded on 
instruments deployed in unpopulated, low-noise settings. DeepDenoiser effectively denoises 
independent seismic data recorded in that setting but did not generalize well to the Long Beach 
dataset, presumably because the noise sources differ from those of Northern California seismic 
dataset that the network was trained on. 

The Long Beach dataset represents a rich data source of seismological urban noise21. In this 
paper, we develop a machine learning-based denoising method by exploiting this rich noise 



resource within the framework of DeepDenoiser to suppress the strong noise level for seismic data 
recorded in the urban setting. To explore the validity of the previously reported widespread 
seismicity down to the upper mantle beneath Long Beach, we specifically include high SNR 
seismic signals from the San Jacinto dataset5 in the training dataset for the neural network to learn 
the seismic signature of real earthquakes recorded on the same instruments, but in a quieter setting. 
We demonstrate that this deep-learning-based denoising tool has the potential to improve the 
detection capability of earthquake monitoring networks in urban settings. 
 

Results 

Network training 

We develop UrbanDenoiser by training the deep neural network with seismic noise from the 
Long Beach dataset and seismic signals from the San Jacinto dataset. The architecture of the neural 
network is based on that of the DeepDenoiser algorithm20. The dataset consists of 90-s windows 
of seismic waveforms for 80,000 noise samples and 33,751 signal samples. The signal and noise 
samples are randomly split into training and validation sets. We generate noisy waveforms at 
different SNR levels by combining the signal training set repeatedly with randomly selected noise 
samples from the noise training set, and randomly shifting the waveform in the window22. The 
input for the neural network is the 2D time-frequency representation of noisy waveforms 
determined by Short Time Fourier Transform. Both the real and imaginary parts are input into the 
neural network so that it is able to learn from the time and phase information. The prediction targets 
are two masks for recovered signal and noise respectively. We generate seismic waveforms for the 
validation set with the same procedure and apply them for fine-tuning the hyper-parameters of the 
network. We test the neural network with the additional seismic data from Long Beach seismic 
recordings. 

We extract noise samples from Long Beach data. These waveforms include various kinds of 
traffic sources (cars, airplanes, helicopters), vibroseis events and other unknown activities23. We 
collect seismic recordings from all the receivers in the Long Beach Phase B deployment on Julian 
days 27 and 48, 2012, and select seismic noise samples from them, because there are fewer 
earthquakes during these two days in the Quake Template Matching (QTM) catalog24. We segment 
the data in 90-s-long time series and remove those containing earthquake signals either from 
known seismic events in the QTM catalog or as determined by the PhaseNet algorithm25.  

The signal samples are extracted from San Jacinto dataset, which were recorded by another 
dense array deployed on the active Clark branch of San Jacinto Fault from 2014 May 7 to 2014 
June 135. This deployment consists of ~ 1,108 geophones that collected high-quality seismic 
signals from small to medium magnitude local earthquakes. The two deployments used the same 
sensors with the same instrumental response. We select the labeled signals with a strict condition. 
We run PhaseNet on the continuous data, and the candidate earthquake signal waveforms are 
selected based on their coherence across the seismic network. We select only those signal windows 
with SNR > 12 (defined as the root-mean-square ratio of the seismic energy after and before the 
first arrival) as the labeled signals. We also include 30,000 seismic signal samples from the North 
California Seismic Network in the training dataset to increase the predictive power of deep neural 
network and reduce overfitting. 

 



Back-projection imaging for a local earthquake with denoised seismic data 

A local M 2.1 earthquake on March 27, 2012 (red star E1 in Fig. 1a) was recorded by the Long 
Beach dense array. Figure 2a and b shows the corresponding seismic profiles for the original data 
and the data as denoised by UrbanDenoiser. The traces are sorted by source-receiver distance. 
Seismic signals in Fig. 2a are affected by strong noise, while after denoising, most of the seismic 
noise is suppressed in Fig. 2b. 

We perform BP to image this earthquake (see methods below). Figure 2c-e show the BP 
imaging results along a 14-km W-E profile (red dashed line AA’ in Fig. 1a) crossing the hypocenter 
with original data and denoised data by DeepDenoiser and UrbanDenoiser, respectively. 
Comparing Fig. 2c, d and e, we find that although the locations determined based on data processed 
by different procedures are similar, the peak amplitudes are more strongly affected, with the 
UrbanDenoiser result showing the largest amplitude, and the DeepDenoiser result showing the 
smallest amplitude. The imaging result based on UrbanDenoiser has the largest peak amplitude 
because the SNR of the seismic data is improved after denoising. The imaging result based on 
DeepDenoiser has the smallest peak amplitude, because the recovered signals lose part of the 
earthquake signal information. 

We select 59 traces along a line crossing the epicenter and perpendicular to the surface trace 
of the Newport-Inglewood Fault (red dashed line BB’ in Fig. 1a) and plot the denoised seismic 
waveforms in a profile sorted by source-receiver distance (Fig. 2f). The intersection of the fault 
trace and the line is closest to Trace 20. From Fig. 2f, we clearly see that the lineup for the first 20 
traces has a faster move-out than for Traces 21-59. This indicates that the P-wave velocity to the 
west of the fault trace is faster than that to the east26. Note that the S-wave arrival can be clearly 
seen in the denoised data. 
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Figure 2. Seismic profile and back-projection imaging results for a local M 2.1 earthquake. 
a Seismic profile on raw data. b Seismic profile on denoised data. The amplitude drop around 
16:51:57 occurs because the neural network decision boundary between earthquake signal and 
noise implemented in the time-frequency domain. For the purpose of earthquake detection and 
location, the coda wave does not influence the result. c Back-projection imaging on raw data with 
the largest normalized amplitude of 512. d Back-projection imaging on denoised data by 
DeepDenoiser with the largest normalized amplitude of 474. e Back-projection imaging on 
denoised data by UrbanDenoiser with the largest normalized amplitude of 536. f Seismic profile 
containing 59 traces along a line crossing the epicenter and perpendicular to the surface trace of 
the Newport-Inglewood Fault; Orange ellipse marks the S wave arrival.  

 
Earthquake Location with Denoised Long Beach Dense Array Data 

We apply UrbanDenoiser to seven-days of seismic data (Julian days 61- 67) and perform BP 
on the denoised continuous data within a 4.4ⅹ6.0ⅹ25.0 km3 imaging volume, the boundary of 
which is shown as a red dashed rectangle in Fig. 1b, to detect and locate the most likely seismic 
sources. Robust seismic denoising allows us to work on the entire day’s data, not just during the 
night when cultural noise is lower, as had been done previously7, 10. Figure 3a shows a one-day 
seismogram recorded by a randomly selected receiver that reveals a strong time-varying behavior 
in amplitude for local time 6:00 am – 10:00 pm (UTC time 14:00 – 6:00+1) when noise level is 
high vs. local time 10:00 pm – 6:00 am (UTC time 6:00 – 14:00) when noise level is low. Figure 
3c and d show the denoised results from Fig. 3a and b, which eliminates the daytime/nighttime 
variation. 



 
Figure 3. Seismogram recorded by station R1134_5043 and the denoised version (in UTC 
time). a One-day raw data. b Zoomed view of a microearthquake event in a. c Denoised version 
for a. d Denoised version for b. Some of the spikes in c are false positives, and we eliminate their 
influence in earthquake detection by utilizing the waveform coherence across the dense array. 
 

Figure 4 shows the seven-day earthquake location 
results in perspective view. Each dot represents a 
detection and we remove those detections located at the 
boundary of the volume to avoid interference from 
regional events. The distribution of sources at 0 – 5 km 
depth shows numerous detections scattering very 
broadly around the fault trace. This trend disappears at 5 
– 10 km and 10 – 15 km but re-emerges at 15 – 20 km, 
where the seismicity tracks the fault trace more closely. 
We locate very few events below 20 km. 

 
Figure 4. Seven-day earthquake BP location results. 
 

We check our detection/location results by examining the seismic waveforms from the dense 
array dataset. We select one detection at (3.4 km, 0.8 km, 5 km) in Fig. 4a, and plot the seismic 
profiles spanning the duration of the earthquake. Figure 5a shows the seismic profiles on the raw 
Long Beach data, from which we can barely identify the seismic signals due to the strong 
background noise relative to the weak earthquake energy; however, after denoising, we can clearly 



see the seismic arrivals in Fig. 5b. Figure 5c shows the zoomed view of the subset from b. The 
increasing first arrival time on traces sorted by the distances between each station and the 
determined epicentral location supports the validity of the location result. This detection is also 
validated by checking the seismograms recorded by the isolated regional stations from Southern 
California Seismic Network (SCSN). 

 

   
Figure 5. Seismic profile containing information for a small earthquake. a Raw data. b 
Denoised data. c Zoomed view for the red rectangle in b. 
 

An earthquake on Julian day 67 is detected by the Long Beach nodal array. It occurred 2.5 km 
to the east of the imaging volume (Fig. 1a, red star E2), so the seismic energy is back-projected to 
a point on the east boundary of the imaging volume, which is excluded from Fig. 4. 

a

b

c



 
Application of UrbanDenoiser to Regional Stations for an Earthquake Sequence 
 

An earthquake sequence struck urban La Habra with a mainshock magnitude of 5.1 at 4:09:41 
UTC on Mar. 29, 2014. We choose the five stations from SCSN nearest to the sequence (Fig. 1a, 
blue inverted triangles), and apply UrbanDenoiser to the seismograms. We confirm an earthquake 
when the detected phases can be associated on two or more stations, and by doing this we find a 
total of 488 events during the 10 hours between 3:00 ~ 12:00. This amount is 10% higher than the 
number in the QTM catalog. 

Figure 6 shows 40-minute seismograms (03:20 – 04:00 UTC, Mar. 29, 2014, vertical 
component only) from the five stations. This is a period between the M 3.57 foreshock and M 5.1 
main shock, and is a relatively quieter window compared with those following the main shock. 
The only event in the QTM catalog during this time is a M 0.67 earthquake at 3:40:59, which is 
also detected in the denoised waveforms shown in a4-II-d4-II. Comparing Fig. 6a4-II-d4-II with the 
raw data in Fig. 6a3-II-d3-II, we find substantial enhancement of the SNR in the denoised version. 
With the denoised data, we find a total of nine events during this 40-minute period. Figures 6a4-I-
d4-I and 6a4-III-d4-III show two examples (not included in QTM catalog) compared with the raw data 
in Figs. 6a3-I-d3-I and 6a3-III-d3-III. This demonstrates that UrbanDenoiser can facilitate the detection 
of more small events in an urban setting. 

 

 
Figure 6. Application of UrbanDenoiser to the 40-minute seismograms (3:20 – 4:00 UTC, Mar. 
29, 2014, vertical component) from the five stations of SCSN (Station CI.BRE, CI.FUL, CI.OLI, 
CI.RHC2 and CI.WLT). a1-e1 Raw seismograms. a2-e2 Denoised seismograms. a4-e4 Zoomed 
view of the denoised potential earthquake waveforms compared with the raw waveforms a3-e3. 



Fig. 7 shows a comparison between the SNR of the denoised signals vs. non-denoised signals 
from Station CI.FUL for 102 events with -0.16 < M < 5.1. The SNR of the non-denoised data 
decreases rapidly with decreasing magnitude (black dots). UrbanDenoiser enhances the SNR for 
each event (red dots). Although the SNR of the denoised data decreases when the magnitude 
decreases, the SNR is consistently higher, and the trend is slower. On average, UrbanDenoiser 
enhances the SNR by about ten-fold, with the most dramatic improvement around M 1.5 - 3.8 
(SNR: 2 - 100). This compares with a recently reported increase of a factor of 2-5 increase in SNR 
reported for denoising applied to more typical seismological settings27.  

 
Figure 7. SNR of the denoised signals vs non-denoised signals from Station CI.FUL for 102 
events varying between M -0.16 to M 5.1. 
 
Discussion 
 

The detection/location results contain the earthquake events only but exclude those large 
amplitude non-earthquake sources. Conventional detection methods detect sources of energy with 
amplitude that exceeds the detection threshold, but cannot differentiate earthquakes from other 
signals, such as waveforms generated by vibroseis or traffic.  UrbanDenoiser can effectively 
suppress the high noise levels, though false positives and false negatives in denoised data should 
still be expected to occur and need to be assessed. The influence of false positives in denoised data 
can be effectively suppressed by using the dense array data for detection. False negatives occur 
when the seismic signal is too weak or when the target seismic phases and the training signal 
samples are not similar to the earthquake waveforms. 

Although the aim of UrbanDenoiser is to separate earthquake signals from the urban noise, it 
could be extended to denoising for vibroseis waveforms by training it using high SNR signal 
samples from vibroseis events. In this case the vibroseis would be treated as the signals that we 
want to recover, while the earthquake signals would be grouped with the noise. Cleaner vibroseis 
signals should benefit the follow-on signal processing for seismic imaging. 

For the most part, we do not have dense array deployments like Long Beach phase A and B 
available to generate a more complete earthquake catalog. The implementation of seismic 
monitoring relies on the isolated seismic instrument from the regional seismic network. The 
conventional Short Time Average/Long Time Average method can result in many false detections 
for phase identification such that it degrades the performance of phase association and event 
location. UrbanDenoiser can remove most of the noise bursts from the raw data and significantly 
increase the SNR for the seismic recordings in a single trace. This benefits the subsequent 
earthquake detection processing and should enhance the effectiveness of seismic monitoring by 
regional seismic networks in urban areas. 
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The earthquake detection results shown in Fig. 4 do not show evidence for widespread 
seismicity below 20 km in the upper mantle. We observe a weak tendency for events to follow the 
surface trace of the Newport-Inglewood Fault at 0 – 5 km. The seismicity at 5 – 15 km is more 
dispersed, which could be due to fault locking. The new seismic location result is consistent with 
our previous study10, which found that at 15 – 20 km depth range, or roughly the root of the 
seismogenic zone, seismicity concentration is greater than at shallower depths. This could be due 
to the stress concentration near the seismic-aseismic transition. Based on our analysis, we conclude 
that earthquake detection and location following pre-processing using deep-learning to suppress 
noise should enable improved earthquake monitoring in urban environments. 
 
Methods 
 
Back-projection (BP) Imaging 

We perform BP to image the earthquake location in two steps: (1) time-shift of each 
seismogram and (2) stacking. It can be expressed as6 

,                        (1) 

where sk(t) is the seismogram recorded at the k-th station, tik is the calculated traveltime from the 
i-th grid point to the k-th station based on a known 3D velocity model, n is the number of stations, 
and stacki(t) is the stacked seismogram for the i-th grid-searching point. 

We calculate the traveltime between each grid point and each geophone at the surface based 
on the Southern California Earthquake Center Community Velocity Model (CVM-H 11.9.1)28 and 
store them in a traveltime lookup table for computational convenience. We perform a grid search 
over each potential source location within the imaging region. For each grid point, all the 
seismograms are time-shifted based on the corresponding traveltime, and the aligned seismograms 
are stacked to a single representative time series. The largest amplitude value along the time series 
is set as the amplitude value at that imaging point. 

 
Seismic Data Processing and Back-projection Location with Continuous Data 
 

We convert the original data in SEG-D format to NumPy format, decimate the time series 
from 500 Hz to 100 Hz, and process them with UrbanDenoiser. The denoised data are down 
sampled to 50 Hz, and band-pass filtered from 5-15 Hz. We normalize the data with their one-hour 
maximum value to suppress the influence of any strong spatially dependent residual noise level 
and calculate the envelope by smoothing the data with a three-point median window on the squared 
waveforms to reduce the sensitivity to the inaccuracy of the velocity model. 

We perform BP for a 4.4 km (X) × 6 km (Y) × 25 km (Z) 3D imaging volume with a grid 
spacing of 200 m in each dimension. The geographic boundary of the imaging volume is shown 
as the red dashed rectangle in Fig. 1b. We perform BP as described above. We segment the shifted-
and-stacked time series for each grid point into three-second time windows, and the maximum 
value within each time window is assigned as the BP value of this grid point. We thus obtain a 3D 
imaging volume for each three-second time window. If the maximum BP value through the whole 
space within a time window exceeds the detection threshold, we mark the corresponding grid point 
as a detection. 
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We set ten times the median absolute deviation (MAD) as the detection threshold for BP 
earthquake detection with the Long Beach dense array data. We fit the peak amplitude values from 
all time windows at each imaging point with a generalized extreme value (GEV) distribution. 
Under this detection threshold, we expect the number of false detections to be less than one per 
day. 
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